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Several attempts have been undertaken in the literature to explain the observed stability of the face-
centered-cubic (fee) configuration for rare-gas crystals (except helium), which structure, according to calcu­
lations based on pair potentials, should be somewhat less stable than that of hexagonal closest packing (hep). 
These attempts have failed or the results been found to be inconclusive. It is shown here how the fee stability 
can be explained in terms of three-body exchange interactions between nearest neighbors in the crystals. On 
the basis of detailed results for neon atoms, the stability analysis may be based on an effective-electron model 
with Gaussian distribution of charge. No multipole expansions are invoked. The three-body interactions in 
first and second orders of perturbation theory follow simple symmetry principles, and their combined effect 
stabilizes the fee over the hep structure by a difference of up to four percent of the cohesive energy for the 
heavier atoms. Finally crystal stability is considered in its relation to total cohesive energy, and energy of 
vacancy formation, for the close-packed structures. 

INTRODUCTION 

ON E of the essential problems in solid-state physics 
and crystal chemistry concerns the explanation of 

the stability of observed crystal structures and, as the 
case may be, the interpretation of transitions between 
different structures exhibited by one and the same 
chemical compound at different external pressures or 
temperatures. 

In the history of the stability problem two classes of 
solids, namely, those of the rare-gas atoms and of the 
alkali halides, have, due to their simplicity, received 
extensive interest in the literature. A forerunner was 
Zwicky,1 who in 1923 carried out calculations on the 
breaking strength of sodium chloride. Hund2 undertook 
the first stability calculation for ionic solids, whereas 
Lennard-Jones and Ingham3 compared, for atomic 
solids, the lattice energies of the face-centered cubic, 
body-centered cubic, and simple-cubic lattices. Later 
Goldschmidt4 established empirical rules for predicting 
the lattice types of ionic and other structures from a 
knowledge of ionic and atomic radii alone. 

A series of important analyses concerning the 
stability of alkali-halide crystals followed, first by 
Mayer,5 then by May6 and Jacobs.7 From the work of 
Born and Mayer8 dates the well-known Born-Mayer 
potential for ionic interactions, consisting of an expo­
nentially decreasing repulsion at short distances, a 
l/i£-electrostatic interaction between the net ionic 
charges, and supplemented by relatively weak van der 
Waalsjjforces. Born9 and his collaborators investigated in 
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detail the mechanical stability of cubic and hexagonal 
lattices with central forces between the atoms (mechan­
ical stability refers to the static lattice energy only). 
Similar considerations were given by Nabarro and 
Varley10 for hexagonal structures with an additional 
interaction energy depending only on the volume of the 
solid (like the Fermi energy of free electrons). 

The result of these analyses was that the rare gases 
should all crystallize in a hexagonal close-packed (hep) 
structure, which is favored over the face-centered-cubic 
(fee) configuration by about one-hundredth of one 
percent of the cohesive energy. This difference is 
extremely small, but it is remarkably constant with 
respect to allowed changes in the potential function.11-14 

Further, it has been shown that neither zero-point 
energy,14-15 nor the possibility of thermal transitions14 

can invalidate this conclusion. 
However, it is known from experiments that solid 

neon, argon, krypton, and xenon have fee structure 
and that only He4 exhibits a hep phase. In attempting 
to explain this deviation between theory and experiment 
it should be remembered that the predicted difference 
in lattice energy between the two structures is very 
small. Therefore, any explanation which singles out 
the rare-gas crystals as a special case is subject to 
uncertainty. For this reason we will enlarge the basis 
for the analysis by including also the stability of 
alkali-halide crystals. In this way, no ambiguity 
concerning experimental verification can arise. 

According to the Born-Mayer theory of ionic solids 
all alkali halides should crystallize in the so-called 
sodium chloride modification, consisting of two inter-

10 F. R. N. Nabarro and J. H. O. Varley, Proc. Cambridge Phil. 
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penetrating face-centered-cubic lattices. This structure 
is favored over the cesium chloride modification, where 
the interpenetrating lattices are simple-cubic, by a few 
percent of the lattice energy. Since the lattice energy 
amounts to 150-200 kcal/mole, the predicted difference 
between the two structures amounts to a few kcal/mole 
in favor of the sodium chloride modification. 

It is known from experiments that all Li, Na, K, 
and Rb halides, plus CsF, crystallize in the NaCl 
structure. However, CsCl, CsBr, and Csl exhibit the 
CsCl structure, contradicting the Born-Mayer theory. 
In addition, it is found that all K and Rb halides, 
except KF, show pressure transitions to the CsCl 
structure. Such transitions are indeed predicted by the 
Born-Mayer theory, but the calculated transition 
pressures are considerably higher than the experimental 
ones. For example, the experimental transition pressure 
for RbCl is 4.900 atm, the calculated value «35.000 
atm. It appears, therefore, that the Born-Mayer theory 
overestimates the stability of the sodium chloride modi­
fication for the K, Rb, and Cs halides, with the possible 
exception of KF. On the other hand, for some of the 
halides with the smallest cations Li and Na, and also for 
CsF, the Born-Mayer theory predicts transitions to the 
CsCl structure which have experimentally not been 
found. This indicates the tendency of the theory to 
underestimate the stability of the NaCl modification for 
halides with rather different sizes of cation and anion. 
For excellent reviews of the stability problem for 
alkali-halide crystals we refer to the treatise by Born 
and Huang16 and to a recent analysis by Tosi and 
Fumi.17 

It is to be noted that, since the cohesive energy of 
rare-gas crystals is only of the order of a few kcal/mole, 
compared with 150-200 kcal/mole for the alkali-halide 
solids, the predicted energy difference between the two 
crystal structures at normal pressures is for the alkali 
halides of the order of 104 times that between the two 
close-packed configurations for rare-gas crystals. 

We postulate that the failure of the theory to 
reproduce the correct experimental properties of rare-
gas crystals and alkali-halide solids has the same 
physical explanation. This assumption is based on the 
observation that the alkali-halide ions are isoelectronic 
with the rare-gas atoms. Consequently, the interactions 
between ions, on one hand, and between rare-gas 
atoms, on the other hand, are formally identical if we 
subtract the purely Coulombic ion-ion interactions and 
disregard polarization effects in view of the high sym­
metry of the unstrained ionic crystals. This simplifies 
the analysis considerably, since the difference between 
solid helium and the other rare-gas crystals cannot 
then, as Cuthbert and Linnett18 have suggested, be 

16 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 
(Oxford University Press, New York, 1954), Chaps. I and II. 

17 M. P. Tosi and F. G. Fumi, Phys. Chem. Solids 23,359 (1962). 
18 J. Cuthbert and J. W. Linnett, Trans. Faraday Soc. 54, 617 

(1958). 

ascribed to a difference*between the two- and eight-
electron outer shells of the atoms. 

The above assumption leads to the practically only 
explanation that the deviations from theory for the 
stability of rare-gas crystals and solid alkali halides 
must be due to considerable many-body components of 
the static interactions between the atoms or ions. It must 
be expected that the many-body interactions may be 
limited to those between triplets of atoms (ions), since 
otherwise a molecular description of these solids would 
completely break down. 

The triplet interactions must be of considerable 
magnitude, since the two-body potential barrier to be 
overcome for alkali-halide crystals is of the order of a 
few kcal/mole. This indicates that they must be of 
exchange type and, therefore, of short range, so that we 
may restrict ourselves to triplets of atoms or ions of 
small dimensions in the crystal. The pair-potential 
barrier for rare-gas crystals is very much lower, but 
here the differences in triplet configurations between 
the two structures are also very much smaller, as we 
will see. 

POSSIBLE MANY-BODY INTERACTIONS AS 
APPLIED TO CRYSTAL STABILITY 

The first explicit calculation of three-body interac­
tions between atoms was carried out by Axilrod and 
Teller19 (triple-dipole effect). It concerns a third-order 
perturbation calculation of induced-dipole interactions 
between three nonoverlapping atoms, i.e., a straight­
forward extension of London's 1/R& van der Waals 
interactions from second order. Axilrod20 applied this 
effect to rare-gas crystals and found that it does favor 
the fee configuration, but that the difference with the 
hep structure is too small to account for the absolute 
stability of the cubic lattice. In addition, the limitation 
to dipole interactions and the exclusion of overlap 
(exchange forces) invalidate an application to the 
immediate neighborhood of an atom in the crystal. 
On the other hand, the triple-dipole effect has been 
found to account for experimental third-virial coeffi­
cients of compressed argon,21 where its application is 
justified. 

It was also known that first-order interactions (over­
lap or exchange forces) between closed electron shells 
are not additive22; the first explicit calculation was 
undertaken by Lowdin23 for ionic crystals, followed by 
Rosen24 and Shostak25 for three helium atoms/There 

19 B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943). 
20 B. M. Axilrod, J. Chem. Phys. 17, 1349 (1949); 19, 719, 

724 (1951). 
21 H. W. Graber and R. D. Present, Phys. Rev. Letters 9, 247 

(1962). 
22 H. Margenau, Rev. Mod. Phys. 11, 1 (1939). 
23 P. O. Lowdin, A Theoretical Investigation into Some Properties 

of Ionic Crystals (Almqvist and Wilksell, Uppsala, 1948). 
24 P . Rosen, J . Chem. Phys . 21 , 1007 (1953). 
25 A . Shostak, J. Chem. Phys. 23, 1808 (1955). 
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exists a remarkable similarity between the relative 
three-body interactions in the Axilrod-Teller (relative 
to additive second-order forces) and the Rosen-Shostak 
(relative to additive first-order forces) calculations in 
that both relative effects are negative for an equilateral 
triangle, and positive for a linear array of atoms. No 
direct attempts were made to apply these effects to 
crystal stability. In addition, solid helium is not of 
direct importance as its exhibits hep structure. 

A number of different-type many-body interactions 
have further been reported, partly based on electrostatic 
effects in which overlap of charge clouds is treated 
classically, or on the Drude model of harmonic oscilla­
tions for the atoms with dipole interactions.26 Finally, it 
was shown by the author and McGinnies27'28 that also 
second-order (van der Waals) interactions cease to be 
additive if exchange effects are taken into account. 
A tendency towards stabilization of the fee structure for 
rare-gas crystals was observed for dipole-dipole and 
dipole-quadrupole interactions. None of the above 
effects can, however, be used as a key to the explanation 
of the stability of rare-gas crystals for one or more of the 
following reasons: (a) They concern systems of little 
direct interest (helium); (b) overlap effects are neglected 
or treated classically; (c) the use of a multipole expan­
sion for the interactions between the atoms. 

On the other hand, it appears possible to base the 
analysis on a model which is sufficiently simple for 
numerical calculations, which avoids the defects 
mentioned above and which retains the possibly 
essential features of the stability problem.26 We observe, 
first that preference for one or the other of the crystal 
structures under consideration is not an isolated 
property of a specific rare gas or alkali halide, but that 
it is common to a number of representatives from both 
series. Consequently, this preference cannot depend 
sensitively on the precise analytic form of the wave 
functions, but it must be determined by some general 
parameters characterizing the electron-charge distribu­
tions of the atoms or ions. 

Further, explicit calculations with neon wave 
functions28 have shown that (i) contributions to three-
body interactions arising from exchange of more than 
one pair of electrons (multiple exchange) between the 
same pair of atoms are not important for densities up to 
that of the crystal; (ii) coupling of inter- and intra-
atomic exchange effects may also be neglected. Since 
neon crystallizes already in the cubic configuration, it 
follows that also for the other rare-gas crystals we may 
neglect effects due to multiple and coupled exchange. 

We are then left with an average of single-exchange 
effects, each term involving one electron of each atom 
(ion) of a pair. This average may be replaced by an 
exchange between "effective" electrons, one such electron 

26 cf. L. Jansen, Phys. Rev. 125, 1798 (1962) for detailed 
references. 

27 R. T.'McGinnies' and L. Jansen, Phys. Rev. 101, 1301 (1956). 
2« L. Jansen and R. T. McGinnies, Phys. Rev. 104, 961 (1956). 

per atom (ion), each representing an average of the 
charge distribution of that atom (ion). The problem 
becomes then formally the same as that for three 
hydrogen atoms with parallel spins of the electrons.29 

The charge distribution of the effective electrons is 
chosen to be of Gaussian form 

p(f)=(/3A1/2)3exp(-/3V), (1) 

where r is the distance from the effective electron to its 
nucleus and where ^ is a parameter which can be 
determined empirically. Since crystal stability depends 
critically on the interactions between atoms (or ions), 
we choose ft such that it fits the 1/R6 part of an empirical 
potential function, which yields values of 13 between 
1.07 and 0.454 in units of 108 cm"1 from neon to xenon.28 

A sensitive test is then to see how well these values of fi 
agree with the repulsive (first-order) part of an inter­
atomic potential function. The agreement is excellent 
for neon, whereas for the heavier rare-gas atoms 13 
appears to increase somewhat with decreasing inter­
atomic distances.26 It should be noted that the precise 
values of (3 do not matter for stability, since we are only 
interested in a range of such values for the heavy rare-
gas atoms. For alkali-halide ions it is generally necessary 
to use different fi values for cation and anion of the same 
halide. We will return to this problem in a following 
publication. 

After this simplification of the stability problem, 
first- and second-order perturbation calculations are 
carried out for triplets of atoms (ions), and the result 
is summed over the lattices. Since the three-body 
interactions are of exchange type and, therefore, of very 
short range, we will limit ourselves to triplets formed by 
a central atom and any two of its nearest neighbors. In 
the case of alkali halides it proves generally necessary 
to include also triplets formed by a central ion and any 
two of its next nearest neighbors. 

RARE-GAS ATOMS: FIRST- AND SECOND-ORDER 
THREE-BODY EXCHANGE INTERACTIONS 

We will now evaluate first- and second-order interac­
tions for a triplet (abc) of rare-gas atoms; the electron 
charge distribution of each atom is replaced by that of 
an effective electron with characteristic parameter $ as 
given by Eq. (1). For the atomic wave functions we take 

^ ( f ) = p i /2( f ) = = (0/^/2)3/2 e x p ( - / 3 V 2 / 2 ) ; (2) 

the zero-order wave function for the triplet is then 
(Slater determinant) 

^ = [31(1-Aa^Jl-^detf ^ ( 1 ) ^ ( 2 ) ^ ( 3 ) } , (3). 

29 To represent also ions with charges plus one and minus one, 
we should formally use two effective electrons per ion, counter­
balanced by nuclear charges of plus three and plus one, respec­
tively. The exchange effect then becomes formally the same as 
that between ions of lithium hydride. However, we will subtract 
electrostatic interactions between the net charges from the outset, 
so that ions and atoms can be represented by the same model. 
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where a, b, c denote the atoms, 1, 2, 3, the effective 
electrons, and where 

Aa6c
2 = Aa6

2+Aac
2+A6c

2-2Aa&AacA fec (4) 

in terms of the overlap integrals Aa&, etc., between the 
different pairs of atoms. The perturbation Hamiltonian, 
Hahc', can be written as 

Habc —Hab -\-Hae + ^ & c , 

in terms of the perturbations between the different 
pairs. An essential advantage of the Gaussian effective-
electron model is that it enables us to evaluate all 
three-center integrals numerically without making use of 
multipole expansions. This is important, since it is 
known30-32 that first- and second-order multipole series 
are only semiconvergent (asymptotic series). 

First-Order Calculations 

The results of the first-order perturbation calculation 
for triplets of rare-gas atoms have been given earlier.26,33 

Let Ei={Habc') denote the total first-order energy for 
the triplet (abc), where the expectation value is deter­
mined with the zero-order wave function (3), and let 
Ei (0 ) = (#„&</)(0) denote the sum of first-order interac­
tions between the three isolated pairs of atoms which 
form the triangle, with the corresponding zero-order 
pair wave functions. We determine the relative three-
body component of the first-order energy, i.e., 

AEi /E i«»s (Ei-£i»>)/EiC°), (5) 

as a function of /3 and of the triangular dimensions. For 
the application to the stability problem of rare-gas 
crystals we limit ourselves, as stated before, to triangles 
formed by a central atom and any two of its nearest 
neighbors in the crystal. There are 12 nearest neighbors 
in both the fee and the hep structures, so that we have 
66 of such triangles in either lattice. Any one of these 
isosceles triangles is specified by the nearest-neighbor 
distance, R, in the crystal and by the opening, 6, of the 
triangle at the central atom. I t appears that AEi/Ei^ 
is only a function of the dimensionless parameter fiR, 
and of 6. 

All first-order integrals occurring34 in Ex and i?i(0) 

can be written as products of overlap integrals (A0&, 
Aac, etc.) and the function 

\ rx erfx 
F ( * 2 ) = - / exp(-y2)dy= (ir^/2) 

X J o X 

for different values of x. They can readily be evaluated, 
since, e.g., 
_ _ _ _ _ _ _ Aa&

2 = exp(~/32i?tt&
2/2), 

30 F. C. Brooks, Phys. Rev. 86, 92 (1952). 
31 A. Dalgarno and F. T. Lewis, Proc. Roy. Soc. (London) 

A69, 57 (1956). 
32 L. Jansen, Physica 23, 599 (1957); Phys. Rev. 110, 661 (1958). 
33 L. Jansen, Phys. Letters 4, 91 (1963). , 
34 A list of these integrals is given in Table II of Ref. 26. 
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FIG. 1. Relative first-order, three-body interaction A£i/Ei (0 ), 
for triangles a — b=l, c (units of nearest-neighbor distance) of 
argon and xenon atoms, as a function of the angle 0 between the 
sides a and b. The symbols h and c denote the hep and fee lattice, 
respectively; the number of triangles at a specific angle 0 is given 
in parentheses. 

for Gaussian distributions (Rab is the internuclear 
distance between atoms a and &), and F(x2) may be 
determined by interpolation, using Tables of the Error 
Function and its Derivative (Natl. Bureau of Standards, 
Washington, 1935). For solid neon, argon, krypton, and 
xenon the values of fiR are 3.44, 2.40, 2.10, and 
1.99, respectively. The results for AEi/Eii0) for solid 
argon and xenon are given in Fig. 1 and in Table I I 
of Appendix I I I , as a function of the opening 6 of the 
triangle at the central atom. 

The values for solid krypton lie in between those for 
argon and xenon; for solid neon the results are not 
sufficiently accurate because all three-body interactions 
become very small; they indicate that the negative part 
of A£i/Ei ( 0 ) is close to those of argon and xenon, but 
that the positive part (0>11O°) lies close to the 
horizontal axis. 

We note that for values of 6 between 60° and 110°, 
AEi/£i ( 0 ) is negative, implying that three-body interac­
tions of such triangles decrease the interatomic repulsion) 
for 6 larger than 110° the first-order interactions are 
more repulsive than the sum of interactions for the three 
isolated pairs. This change of sign agrees with the results 
found by Rosen24 (Shostak25 analyzed only the case 
0= 180°) for three helium atoms, 
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TABLE I. The nine different triangles a, &, c with a = b — 1, between 
the hep and fee structures. 

hep 
fee 

a\ b\ 

1, 1, 
1, 1, 

c2 

8/3 
3 

e 
110° 
120° 

No. 

3 
6 

a\ b\ 

1, 1, 
1, 1, 

c> 

11/3 
4 

e 
146° 
180° 

No. 

6 
3 

I t is easy to show that a curve of the type as given in 
Fig. 1 stabilizes the hexagonal close-packed configuration. 
To see this we determine first the differences in tri­
angular arrangements between the fee and hep struc­
tures, i.e., we compare the 66 triangles formed by a 
central atom and any two of its 12 nearest neighbors 
in the two lattices. I t appears that of these 66 triangles 
57 are the same between the two structures, but 9 are 
different. The dimensions of these 9 triangles and the 
corresponding values of 6 are given in Table I (a} b, c, 
stand here not for the atoms, but for the sides of the 
triangle in units of nearest-neighbor distance). 

For a comparison with AEi/Eim we have, in Fig. 1, 
also indicated the important values 0=110° and 146° 
(hep) and 0=120° and 180° (fee), supplied the corre­
sponding points of the curves with h (hexagonal) and 
c (cubic) and written in parentheses the number of 
triangles for that value of 6 in the corresponding struc­
ture, according to Table I. 

Since the coordination number of the two structures 
is the same, we determine the first-order energies for the 
same values of ($R. To compare the two lattices the 
values of AEi have to be calculated for a fixed value of 
£ i ( 0 ) itself, for example, at 0= 120°. This transformation 
of the total pair interactions may be carried out 
according to a 1/R12 dependence, or an exponential 
decrease of the pair repulsion, which makes very little 
difference. I t flattens the curve for AEi/J5i(0) slightly 
between 0=120° and 180°, leaves the zero value at 
0^110° unchanged and lowers the value for an equi­
lateral triangle somewhat. This, however, does not 
affect the following argument. 

In good approximation AEi/Ex(Q) increases (slowly 
and) linearly with 0 between 120° and 180°. Let us 
indicate its value at 146° by X, at 180° by X+a. Then 
at 120° the value is very nearly X—a, whereas at 
0=110° the contribution is F ^ 0 . The comparison 
yields (^i (0) evaluated at fixed 0): 

[£ i ( fcc ) -£ i (hqp) ] /£ i»> = 6 ( X - a ) + 3 ( Z + a ) 
- ( 6 X + 3 F ) = 3 ( [ ( X - a ) - F ] > 0 . (6) 

Since J5i(0) is always positive, this means that the fee 
lattice has a higher (positive) first-order energy than 
the hep configuration, so that the hexagonal close-packed 
lattice is stabilized by first-order three-body interactions. 
Numerically, this difference is found to be a few percent 
of the first-order lattice energy; it is, therefore, of the 
correct order of magnitude, but has the wrong sign. 
The type of curve of Fig. 1 is of particular importance 
also for second-order three-body interactions. 

Second-Order Calculations 

Since rare-gas crystals are held together by second-
order (van der Waals) interactions, three-body compo­
nents of such forces may be of essential importance for 
crystal stability. This expectation is confirmed by the 
results of the following analysis, of which preliminary 
results have been published elsewhere.35,36 

We consider again a triangle (abc) of atoms and 
three effective electrons 1, 2, 3. For the second-order 
energy one has to evaluate 

{Habc )Qic(Habc )K0 

£2=E 
«•« Eo—EK 

{[_Hahc'-{Hahc
f)J), (7) 

Eav 

where Eav is an average excitation energy defined by 
the averaging procedure. The index K numbers the 
excited states of the system (energy EK), Eo is the 
unperturbed ground-state energy. The brackets denote 
again an expectation value for the ground-state wave 
function (3). 

Since (Habc) can be taken directly from the first-
order calculations, the only unknown quantity is 
(Habcf2)' Let E2

W denote the sum of second-order 
energies between the three isolated pairs of atoms which 
form the triangle. Then the quantity 

A£2/£2<°>= (E2-E2^)/E2^ (8) 

measures the relative second-order three-body interac­
tions for the given triplet of atoms. I t should be noted 
that the average excitation energies defined by the 
expressions for E2 and £2

( 0 ) are not necessarily the same 
quantities. I t can be shown,28 however, that their 
difference may be ignored for the present purposes. In 
forming, then, the ratio AE2/E2

{0\ the quantities Eav 

cancel to a sufficient degree of accuracy. 
The next step consists in substituting the explicit 

expression for Hab/ in Eq. (7), together with the 
determinantal wave function (3), and in evaluating the 
various expectation values which occur. We retain 
again Hab/ in its exact form, i.e., no multipole expan­
sions are invoked for the interactions. 

Whereas the resulting equation for E2
(0) is relatively 

simple, the formal expression for (HabJ
2) is already of 

considerable complexity. The square of SP" contains 21 
different terms and, if we decompose HabJ

2 into squares 
and double products, 

HabJ
2^Hab'

2+HaJ
2+Hbc'

2+2Hab'Hac' 
+2Hab'Hbc'+2Hac'Hbc', 

then there are in total 126 integrals to be evaluated, 
many of three-center type. 

35 L. Jansen, Phil. Mag. 8, 1305 (1963). 
36 L. Jansen and S. Zimering, Phys. Letters 4, 95 (1963). 
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To arrange these terms and simplify the notation, in turn, are all linear combinations of nine basic integrals 
we follow a two-step procedure.37 First, it appears K, L, M, N, 0 , P , Q> R and S. For the following we will 
possible to express JE2

(0) and (Habc2) as a linear combina- use only dimensionless distances PRab, etc., where /5 is 
tion of eight auxiliary functions Cfc, (B, 6, 3D, 8, SF, g, the Gaussian parameter. 
and 5C. I t is then found that these auxiliary functions, The auxiliary functions are defined as follows: 

/32a(/37?a6)= / / ^a
2(l)^2(2)#a6'2<Zri<Zr2; (9) 

pAah*®(i3Rab)= f / "^a( l )^a(2)^( l )^(2)ffa6 ,«ri r f r 2 ; (10) 

/32e(/3Pa&J^ac, £ i a c ) = f f f<pa*(l)<pb
2(2)<pc

2(3)Hab'Hac'dTidT2dTz; (11) 

pAab
2£>(t3Rac,PRc(aih %oc(ab))= J J I <Pa(l)<Pa(2)<Pb(l)cpb(2)cp<?(3)Hac

,2dT1dr2dr^ (12) 

pAab*6(0Rae,PRhefiReiab))= [ [ [ *>«(1) *>«(2) **(1) ^ft(2) V 2 (?)HatHbtdj^dT2djl J (13) 

p2Aab
2$(t3Rab,l3Rac,PRc(ab))== [ J (<Pa(l)<Pa(2)(pb(l)<pb(2)^c2^)HabHac

fdr1dT2dTz) (14) 

/ 3 2 A a 6 A a c A 6 c g ( ^ a & , ^ a ( 6 c ) ^ ( a 6 ) ( & C ) ) - / J / *>a(l) <?a(2) ^ & ( 2 ) <£>6(3) <? c ( l ) <pc(3)Hab'
2dTldT2dTZ \ ( 1 5 ) 

P2AabAacAbMl3Rac,pRhc,pRb(ac))== II <Pa(l)<Pa(2)<pb(2)<pb(3)ipc(l)<pc(3)HaJHbc
,dT1dT2drz. (16) 

Similar expressions are obtained by permuting a, 6, and c. In the above notation Rc(ab) denotes the distance between 
atom c and the middle of Rab, whereas R(ab) (be) stands for the distance between the middles of Rab and RbC. Further, 
^.bac denotes the angle between Rab and Rac, ^ac(ab) the angle between Rac and Rc(ab), etc. 

When we substitute the explicit expressions for Hat, etc., into (9)-(16) then it appears upon inspection that the 
auxiliary functions are linear combinations of the following nine basic integrals: 

2 r 
K(x) = -e-*2 et2dt; (17) 

x Jo 

erfx 2 rx 

L(x) = = / e-Ht\ (18) 
X XTT1'2 J 0 

g— x2 px 

M(x) = / ett2[erf(V21/2)]2rf«; (19) 
X Jo 

/•CO pu 

N(X)=(2/XT1I2) (e-[-2+(«)2i-e-[«2+(«+,)2]) / et*dtdu; (20) 
Jo Jo 

/•CO /»27T / » T 

0(u,v,6)— I j I x2e~x2(u2+x2—2^xsina s in7)~ 1 / 2[^ 2+x 2~2^sina sin(7+^)]~1 / 2 sinaJa^7^x; (21) 
Jo Jo Jo 

/•co / » 2 T /»ir 

P(u,v,$)** / / / s V ~ * 2 ( « 2 + ^ ~ 2 ^ s i n a s ^ ^ 
J o J o J o 

___________ X erf _ (fl2+x2—2z># sina sin7) 1/2_ sinada^ydtf; (22) 
37 The following mathematical analysis is essentially due to my collaborator, Samson Zimering. 
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/•CO /.27T /»7J 

Q(u,v,d)= / / 
Jo Jo Jo 

x2e x2(u2+x2--2ux sina sin7)~1/2[j/2+x2— 2vx since sin(7+#) J" •1/2 

Xeri£(u2-{-x2—2ux sina sin7)1/2~|erf|~(z;2+x2—2zw since sin(7+0))1/2D sinadadydx; (23) 

R(x) = l-x2L2(x)+ (2/TTli2)[_L(oc2ll2)~e-^L(x)~]; (24) 

/

oo / /»M v 2 

^-( . - , )2_^- ( w + , )2- ] / / f-HtSdu. (25) 
I t is seen that the integrals 0 and P are special cases of the general integral Q, namely, those cases in which the 
first, then the second of the error functions occurring in the integrand of Q is replaced by 1, respectively. I t 
is found also that the integral R is a special case of 0 and that S is a special case of Q, through the relations 

R(x) = Q (xfifi°) and S(x) = Q (x,xfi°). (26) 

The linear relations between the auxiliary functions GL to 5C and the basic integrals K to S are given in Appendix I. 
We can now write the second-order pair energy, E2

(0) , for the triplet (abc) and the expectation value (Habc'2) 
occurring in the total second-order energy E2 [Eq. (6)] in terms of the auxiliary functions, as follows: 

a(f3Rab)-Aab
2(&((3Rah) 

-£av£2
(0 W = (Eab'y/eW+Kac), (be)-}, 

1 - A a 6
2 

(27) 

where e is the electronic charge, and where [_(ac), (be)} signifies that the corresponding expressions for the pairs ac 
and be must be added. The expression for {HabeY can be taken directly from the first-order calculations. 

The equation for {Habc2) reads 

(l-Aab
2)(Habc'

2)/p2e*={a(t3Rab)-Aab^ 
+ L(ac,(bc)}} + {-Aab

2®(i3RaeMc(abh^a^ 

-\-AabAacAbcQ(l3Rab,PRa(bc)^R(.ab)(bc))-\-2AabAacAbc^(PRahPRac,PRc(ab)) 

+ Z(ba),(ac),(ca),(bc),(cb)']}. (28) 

I t is to be noted that the total number of permuta­
tions for the last four terms is six, compared with three 
for the first four terms of (28), since for the last terms 
permuting a and b, or a and c, or b and c is geometrically 
different for the arguments of the functions 2), 5^ g, 
and 5C. In the first two terms on the right of (28) one 
recognizes again part of the two-body interaction for 
the pair ab, but the normalization constant has changed 
from 1 — A0&

2 to 1 — A0&c
2. The difference between these 

terms of (28) and (27) leads then to three-body effects 
which are purely due to overlap. 

The final step in the evaluation of the relative second-
order three-body interactions involves substituting 
the corresponding linear combinations of the basic 
integrals (17)-(25) for the auxiliary functions in (27) 
and (28) and computing the basic integrals for the 
arguments determined by the triangles considered. In 
principle, the basic integrals must be evaluated by 
electronic computation. However, it was found that for 
many isosceles triangles, asymptotic series expansions 
which are sufficiently accurate can be given for these 
integrals. The two parameters which determine the 
accuracy of these series are (5R (R is the length of the 
two equal sides of the triangle and 13 is the Gaussian 
parameter) and the opening, 0, of the triangle at the 

central atom. For small PR, i.e., for the heavy rare-gas 
solids, and 0<9O° the series have to be replaced by 
machine calculations. For all other configurations the 
final relative three-body interactions can be evaluated 
in analytic form; the expressions are of the type of a 
sum of exponentially decreasing functions of the 
triangular dimensions, plus a sum of inverse powers of 
these dimensions. We list in Appendix I I the asymptotic 
series used; further details on the calculations and error 
estimates are given in a separate report.38 Some 
numerical results for the auxiliary functions are 
compiled in Table IV of Appendix I I I . 

We consider, as in the first-order calculations, tri­
angles formed by a central atom and two of its twelve 
nearest neighbors in the hep and fee configurations. 
The relative second-order three-body interactions (8) 
are functions only of 0R and of 6. 

In Fig. 2 and in Table I I I of Appendix I I I , AE2/E2
W 

is given as a function of.0 for solid argon (J3R=2A). 
There appear to be two important contributions to 
AE2/E2w, due to : 

(i) effects involving diatomic exchange only, i.e., 
38 S. Zimering and L. Jansen, Technical Report 2846-6, BMI-

Geneva, July 1963 (unpublished). Copies of this report are 
available upon request. 
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AE, 

FIG. 2. Relative second-order, three-
body interaction kE^/E^, for tri­
angles a = b = l, c (units of nearest-
neighbor distance) as a function of 
the angle 6 between the sides a and b. 
The curves I and II denote diatomic 
and triatomic exchange contributions, 
respectively; (I+11) is the total 
second-order effect. Curve I I I rep­
resents the Axilrod-Teller (third-
order) effect, magnified twenty times. ~f 

/ 

/ 

I 
/ 
i~ 

r v 
110° 
I 

ARGON 

I — Diatomic exchange 

I — Triatomic exchange 

IE = 2 0 x (Axilrod-Teller) 

146° 
1 

terms arising from exchange of electrons between two 
of the three atoms on the triangle (curve I ) ; 

(ii) effects of triatomic exchange, i.e., those involving 
all three atoms on the triangle (curve I I ) . 

The total result for A£ 2 /£ 2
( 0 ) , i.e., the sum of 

diatomic and triatomic exchange effects (curve I + H ) 
has a surprising 6 dependence: It is practically identical 
with the one obtained for the first-order effect. From the 
analytical form of the final result we conclude further 
that AE2/E2

(0) for neon, krypton, and xenon behaves 
in the same way as the first-order effects for these 
solids. 

Since the total pair energy, E2
m, for the triangles is 

always negative, we conclude that for values of 0 
between 60° and approximately 110° three-body 
second-order interactions decrease the interatomic 
attraction compared with an additive sum-over-pairs; 
for larger values of 6 the three-body forces are attractive. 
This change of sign agrees with the third-order Axilrod-
Teller effect, which is also plotted in Fig. 2 (curve I I I ) . 

I t is observed that the second-order exchange forces 
are approximately 20 times larger than the third-order 
three-body interactions, and that the exchange effect 
exhibits a much stronger 6 dependence between 0=90° 
and 120°. 

The AEi/E^0) and AE2/E2
i0) curves are of the same 

type. Therefore, we can follow the same analysis as 
given in first order concerning stability. Since Ei ( 0 ) 

and E2
(0) have opposite sign, the conclusion is now 

reversed: Second-order three-body interactions favor the 
face-centered-cubic configuration for rare-gas crystals. 
Summed over the triangles listed in Table I this 
difference, relative to the total two-body energy of the 
crystals, is of the order of one percent in favor of the 
fee structure for argon, krypton, and xenon [on the 
basis of Eq. (6)]. 

TOTAL THREE-BODY EXCHANGE INTERACTIONS 
AND CRYSTAL STABILITY 

In Fig. 3 we compare the relative three-body interac­
tions in first- and second-order for isosceles triangles 
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FIG. 3. Comparison between the relative first- and second-order 
three-body interactions for triangles a = b = l, c (units of nearest-
neighbor distance) of solid argon (/3i? = 2.4) as a function of the 
angle 0 between the sides a and b. The nine different fee and hep 
triangles (Table I) are also indicated. 

(I3RJ8) of argon atoms. Indicated are also the points of 
the curve referring to the nine hep and the nine fee 
triangles of Table I. 

Three main conclusions can be drawn from the figure: 

(A) AE1/Eiw^AE2/E2
(0) for all triangles considered. 

This has the consequence that we may write the total 
(first-order plus second-order) relative three-body 
interactions for each triangle as follows: 

AJS/E<°>s (AE1+AE2)/(£i<°)+E2(°)) 

tARt/E^* >,AE2/E2M. (29) 

The following two possibilities are then to be dis­
tinguished : 

(Ai) £<0>=£i<0M-£2
(0 )<0. This means that the 

total pair interactions between the atoms on the triangle 
are attractive. This situation applies for van der Waals 
crystals, such as those of the rare gases. Since £ i ( 0 ) > 0 , 
i£2

( 0 )<0, we see that in this case AE has the same sign 
as A£2, and we conclude: 

The stability of rare-gas crystals is determined by 
two-body interactions and by three-body interactions 
in second order of perturbation theory, i.e., the same 
order as the van der Waals forces themselves. 

(A2) £ ( 0 ) = £ i ( 0 ) + £ 2
( 0 ) > 0 , implying that the total 

pair interactions between the atoms on the triangle are 
repulsive. This situation applies for alkali-halide crystals, 
where it is to be remembered that we have subtracted 
the electrostatic interactions between the ionic charges. 
The reason why J3(0) has now reversed its sign compared 
with van der Waals crystals is because the Madelung 
energy has compressed the crystal to the extent that the 
closest ions repel each other. In this case the total 
three-body energy AE has the same sign as AEh the 
first-order effect, and we conclude : 

The stability of alkali-halide crystals is determined by 
two-body interactions and by three-body interactions 
in first order of perturbation theory. 

(B) First-order three-body exchange interactions 
favor triangles with small opening 6; 

(C) Second-order three-body exchange interactions 
favor triangles with large opening 0. 

On the basis of these properties of three-body inter­
actions the stability problem for rare-gas solids can be 
solved. Since the pair energy, E(0\ for each isosceles 
triangles is negative, AE has the same sign as AE2, i.e., 
the total three-body effect favors the face-centered-cubic 
configuration for rare-gas crystals. To estimate the energy 
difference between the hep and fee structures relative to 
the pair energy of the crystal we proceed in the following 
way. Let e denote the value of the pair energy at the 
equilibrium nearest-neighbor distance, R, in the lattice, 
and let Ae denote the total (first- plus second-order) 
three-body energy for an isosceles triangle with opening 
0. Then 3e is the value of £<0) for 0=60° ; for the other 
isosceles triangles it is sufficiently accurate to calculate 
JE (0) on the basis of a Lennard-Jones (12,6) potential. 
The values of E<°> at (9=60°, 90°, 120°, 146°, and 180° 
are then 3e, 3e(0.745), 3e(0.691), 3e(0.684), and 
3e (0.677), respectively. 

To calculate Ae we note that, for the isosceles triangles 
considered, E2

(0) is practically precisely — 2£i ( 0 ) . This 
gives 

/ AE1+AE2\ / A£i AE2\ 
I )E«» = \-2 )£<0). (30) 
W 0 > + E , < ° V \ £ i ( 0 ) £ 2

( 0 ) / 

From Fig. 3 we determine values of A# of — 0.48e; 
-0.1341e; « 0 ; 0.1244e; 0.1231c; and 0.1219e for 
0=60°, 90°, 110°, 120°, 146°, and 180°, respectively. 
By using lattice sums for the hexagonal and cubic 
structures we find that the total pair-energy of these 
crystals is the same to within 10~2% and equal to 
SAeN, where N is the total number of atoms in the solid. 

To determine the total three-body energy of the hep 
and fee structures we sum over all isosceles triangles 
with two atoms nearest neighbors of the third one. 
There are 66 of such triangles formed by a central atom 
and any two of its 12 nearest neighbors. In the fee 
structure there are 24 triangles at 0=60°, 12 at 90°, 
24 at 120°, and 6 at 180°. In summing the three-body 
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energy over the crystals, it has to be noted that every 
equilateral triangle is counted three times in the 
summation, all other triangles only once. We obtain for 
the cohesive energy, £coh, of the two structures 

(£coh)fcc/^=8.4€+8A6o+12A9o+24A12o+6A180, (31) 

and 

(£Coh)hcp/^=8.4e+8A60+12A9o+3Ano 

+ 18A120+6A146+3A180. (32) 

Hence, the relative difference is 

CECoh)fcc~ (-Ecoh)hcp 6Ai2o+3Aiso~ (3Ano+6Ai46) 

SAeN 8.4€ 

(33) 
By substituting the values for A#, given earlier, we find 

SAeN 

Since e<0 , this implies that the face-centered cubic 
lattice is more stable than the hexagonal close-packed 
configuration for solid argon by about 4 % of the pair 
cohesive energy, thus largely exceeding the 0.01% 
difference in the pair energy which favors the hep 
structure. If we take, in first approximation, only the 
difference between 3 fee triangles at 6= 120° and 3 hep 
triangles at 0=110° [Eq. (6)], then we find the same 
value to within 0 .1%. This shows again, as was noted 
earlier, that the essential stabilizing factor in going from 
the hep to the fee structure is the transition of three 
triangles from 6= 110° to 0= 120°. 

COHESIVE ENERGY AND ENERGY OF VACANCY 
FORMATION FOR THE FCC AND 

HCP STRUCTURES 

I t is important to compare also the total cohesive 
energies of the fee and hep configurations for solid 
argon. We find directly, from (31) and (32), 

(£Coh)fcc= 8 . 4 ^ ( 1 - 0 . 2 0 6 ) , 

(^coh)hcP=8.4A^(l-0.251), (35) 

implying that the cohesive energies for the cubic and 
hexagonal structures are decreased in absolute value by 
21 and 25%, respectively, because of three-body 
interactions. The magnitude of this effect is surprising, 
since it is generally believed that the values of inter-
molecular potential parameters determined from gas 
data are in good agreement with a pair-potential inter­
pretation of the cohesive energies of rare-gas solids.39'40 

I t appears, however, that the three-body component 
of the cohesive energy is extremely sensitive to the precise 

39 E. R. Dobbs and G. P. Jones, Rept. Progr. Phys. 20, 516 
(1957). 

40 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954), Chap. 2. 

values of A £ / £ ( 0 ) for small values of 0, whereas the 
stability of the cubic configuration is not sensitive at all 
in this region. For example, if we decrease AE2/E2

i0) 

at 0=60° by 10% from 0.18 to 0.16, and at (9-90° 
from 0.06 to 0.05, then we obtain with (30), (31), and 
(32), for the cohesive energies 

(^coh)fcc=8.4^e(l-0.028), 

(£coh)hcp=8.4iV€(l-0.073), 

so that with a small change the three-body part of the 
cohesive energy for the fee and hep structures decreases 
to about 3 and 7%, respectively. This result shows that 
the difference in three-body energy between the two 
lattices may be comparable with the three-body compo­
nent of the cohesive energies themselves. Our present 
precision in the evaluation of some of the basic integrals 
for small values of 6 does not seem to exclude definitely 
this possibility. 

Another quantity of special interest in this connection 
is the energy of vacancy formation in solid argon. Foreman 
and Lidiard41 have recently compared experimental 
data on the specific heat of solid argon for temperatures 
between 40°K and the melting point with theoretical 
results obtained on the basis of a lattice dynamical 
calculation using the anharmonic Einstein model. The 
difference between the two curves was ascribed to 
vacancies in the lattice, which allows the calculation of 
the free energy of vacancy formation. They found a 
considerable discrepancy with theoretical results by 
Nardelli and Repanai Chiarotti42 based on two-body 
interactions between the atoms, in that Foreman and 
Lidiard's values are smaller by a factor of about 1.7 
than the two-body results. A preliminary analysis35 of 
this effect on the basis of three-body interactions has 
been given earlier.43 

We consider a fee crystal of N argon atoms without 
vacancies, and compare its cohesive energy with that of 
a crystal with N atoms plus one vacancy; the difference 
is then the (static) energy of vacancy formation, Ev a c . 
For the crystal without vacancies, we have, from (31), 

i\r[8.4e+8A6o+12A9o+24A12o+6A180]. (31') 

In the case of N atoms plus one vacancy we loose, first 
of all, the two-body energy of one atom, 8.4e. To 
determine the three-body interactions, we calculate 
these first with an atom at the site of the vacancy (i.e., 
a system of iV+1 atoms without vacancies) and then 
subtract all three-body interactions which involve the 
atom at the vacancy. The result for the (static) 
cohesive energy, -ECoi/, for N atoms plus one vacancy is 

^coh'=(A r-l)8.4€+(7V+l)[8A6o+12A9o+24A1 2 0 

+6A180]-[24A6o+36A9o+72Ai2o+18A18o]. (31") 

41 A. J. E. Foreman and A. B. Lidiard, Phil. Mag. 8, 97 (1963). 
42 G. F. Nardelli and A. Repanai Chiarotti, Nuovo Cimento 18, 

1053 (I960). 
43 Equations (3) and (4) of Ref. 35 are inaccurate because of the 

omission of additional three-body interactions. 
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The (static) vacancy energy, £vac, is then 

£vac^£coh-£coh'= 8.4e+46A6o+24A90 

+48A120+12A180. (36) 

Comparison with (31) shows that the three-body 
component of the vacancy energy is just twice that of the 
cohesive energy per atom for the perfect crystal. From 
(35) we find, therefore, that £vac=8.4e(l-0.412), 
whereas the two-body value would be 8Ae. For the 
ratio between the two-body vacancy energy and (36) we 
obtain 1/0.588=1.70, in excellent agreement with the 
value determined by Foreman and Lidiard. 

It should be noted that Evac, like the cohesive energy, 
exhibits extreme sensitivity with respect to the values 
of AE2/E2

W for small 6: If we take again 0.16 instead 
of 0.18 for the relative second-order effect at 0=60°, 
then the vacancy energy increases to 8.4e (1—0.056) 
and the above ratio becomes 1.06 instead of 1.70. 
Consequently, if Foreman and Lidiard's analysis is 
correct, then also the cohesive energy of the fee lattice 
has a considerable three-body component. 

CONCLUDING REMARKS 

We have found that the stability of the face-centered-
cubic configuration for rare-gas crystals depends pri­
marily on the type of curve for AE/Em as a function of 
the opening, 0, of the isosceles triangles formed by a 
central atom and any two of its nearest neighbors in the 
crystal. Moreover, the difference in three-body cohesive 
energy between the fee and hep structures changes 
very little even if we decrease the magnitude of AE/E(0) 

at 0=60° by 40%, whereas the three-body components 
of the cohesive energy and the energy of vacancy 
formation decrease by almost an order of magnitude. 

One then has to make sure that this type of behavior 
for AE/EW is not induced by the specific choice of a 
Gaussian distribution for the effective charges. The 
answer to this question is twofold. First of all, a 
Gaussian distribution is in very good agreement with 
the two-body potential between neon atoms, with the 
same value of the parameter /3 for large and small 
interatomic distances.26 In addition, it appears that the 
outer part of a Hartree-Fock charge distribution for 
argon atoms can be fitted with a Gaussian function; 
the resulting value for /3 is the same to within five 
percent as that determined from long-range interac­
tions.28 Secondly, we have compared in Fig. 2 the 
AE2/E2

(0) dependence on 6 with that of the Axilrod-
Teller effect, magnified twenty times. In this way, good 
agreement is obtained at 0=60° and 180°; the differ­
ences for intermediate values of 6 are the result of 
exchange, and not of the Gaussian distribution. 

The same comparison applies for the Rosen-Shostak 
first-order three-body interactions between three helium 
atoms.24,25 Rosen found that for an equilateral triangle 
and a linear array of helium atoms, AEi/Ei(0) can be 
represented by A exp[— a(Rab-\-Rac+Rbc)~] with 

A = -1.15; a=0.33 and ,4 = +9.8; a=0.66 for these two 
cases, respectively (all distances are expressed in atomic 
units). If we take i?a&=i?aC= 1.98 a.u. (=1 A), then 
AEx/EiM is equal to - 1 8 % at 60° and +6.6% at 180°, 
in excellent agreement with the Gaussian AEi/Eiw 

values for argon. Since the Rosen-Shostak effect is due 
to exchange, its values for intermediate 6 must lie close 
to those given by the Gaussian model. It appears, 
therefore, that the Gaussian distribution plays a 
"neutral" role in determining the 6 dependence of the 
relative three-body interactions. 

Upon increasing the value of the dimensionless 
parameter ftR, i.e., upon going to lighter rare-gas atoms 
or expanding the crystal, the positive part of the 
AE/Ei0) curve approaches the horizontal axis. For solid 
helium (He4), the differences between the three-body 
energies of the fee and hep lattices disappear completely, 
and the hep structure becomes more stable because of its 
more negative two-body energy. The transition to 
face-centered cubic structure observed by Dugdale and 
Simon44 may, consequently, be interpreted in terms of 
two-body interactions alone.14 Recently, a third solid 
phase of He4 was found which is probably body-centered 
cubic.45 

Although the difference in cohesive energy between 
the two close-packed configurations of rare-gas crystals 
was found to amount to as much as 4%, its absolute 
value is still very small, namely, of the order of 0.1 
kcal/mole for the heavier atoms. Solid neon appears to 
be a limiting case and it is therefore not excluded that 
it could be observed in hexagonal packing by special 
crystallization techniques. It is of interest to note 
that recently Meyer, Barrett, and Haasen46 have 
observed a metastable hexagonal argon phase which 
sometimes occurs in polycrystalline blocks frozen from 
a bath of liquid, with a high density of stacking faults. 
Upon the addition of small amounts of nitrogen, the 
hexagonal phase becomes stable near the melting point 
of the crystal. 

A large number of other van der Waals crystals are 
known to crystallize in close-packed structures. Some 
of them, for example nitrogen and carbon monoxide, 
exhibit a transition from fee to hep with increasing 
temperature. The same general type of three-body 
exchange interactions must be expected to play a role 
for stability in those solids, supplemented by orienta-
tional two-body forces (e.g., due to electric quad-
rupoles). Kihara47 has recently built experimental 
models of such molecules and shown that they crystal­
lize in the observed structure for sufficiently strong 
quadrupole moments. 

44 J. S. Dugdale and F. E. Simon, Proc. Roy. Soc. (London) 
A218, 291 (1953). 

45 Cf. A. F. Schuch, W. C. Overton, Jr., and R. Brout, Phys. 
Rev. Letters 10, 429 (1963). 

46 Lothar Meyer, C. S. Barrett, and P. Haasen (to be published). 
47 T. Kihara, Acta Cryst. 16, 1119 (1963). 
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No attempt has been made in the present analysis to 
extend the calculations beyond second-order perturba­
tion effects, nor to include simultaneous interactions 
between more than three atoms. The reason is, first of 
all, the prohibitive complexity of higher order calcula­
tions and, further, the belief that such a double-series 
expansion (in the number of simultaneously interacting 
atoms on one hand, and in orders of perturbation theory 
on the other hand) must converge rapidly in order to 
render an "atomic" description of van der Waals 
crystals at all valid. The comparison with the Axilrod-
Teller third-order effect given in Fig. 2 supports 
this supposition. The relative three-body interactions 
between rare-gas atoms are considerable at short range; 
this result seems to be indirectly confirmed by the 
recently established chemical reactivity of the heavy 
rare gases, indicating that the closed electron shells 
are less stable than was originally believed. 

We found that the rare-gas crystals are constructed 
according to a minimum-energy principle involving 
two-body interactions and triplet energies which follow 
simple symmetry principles. These principles may be 
illustrated by considering a central atom in the crystal 
and its twelve nearest neighbors, of which six are on a 

hexagon in the central plane, and three on triangles 
above and below this plane. In the hep structure the 
two triangles have the same orientation, whereas in the 
fee configuration one triangle is rotated by 60° with 
respect to the other. This rotation implies a very small 
loss in two-body energy, but a substantial gain in 
three-body interactions, involving the transition of 
three hep triangles at 0=110° to fee triangles with 
slightly larger opening, namely 120°. 

In a following publication the stability of alkali-
halide crystals will be analyzed on the same basis. 
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APPENDIX I 

Linear Relations between Auxiliary Functions GL to 3C [Eqs. (9 ) - (16)] and 
Basic Integrals K to S [Eqs. (17)- (25)] 

a (x) = l/x2+2L2 0 ) + (2l>2/x)L {x/21'2)+N (x) - 4L (x)/x- 4M (x), 

(B(*)= 1 + 1 / r H - (2/x) (2/Ty/2+2K(ix)+2D$x)- (4:/x)L(ix)-4R(ix). 

e ( x i , x 2 ; a ) - [ l M - L O ^ 
+ (l/7r3/2)[0(^i,x2; a)~P(xhx2; a) — P(x2,Xi; a)+Q(x2,x1; ce)] , 

where a = «£#i, x2. 

£>(xhx2; a) = l/xii+K(x1)+2L(x1)L(x2)+ (2l'2/x1)L(x2/2
1!2) 

+N(x2)-~ {2/xl)[_L(x1)+L{x2)~]-2M{x2)- (2/^2)P(x1,x2',a), 
where a— ^ £ 1 , x2. 

- ( * i + * 2 ) / * i * 2 ] [ Z ( a ^ <xltx2) 
— P(xhx2; $.Xi,xz) — P(x2,xz; -$.x2,xz)+S(xz)J. 

^{xlyx2,x,)^l\/x2-L{x2)Jl/x1-2L{x1/2)+ 

-R(XZ)+TT-^ZO(X1/2,XZ; ^xl/2,xz)-P(x1/2,xz; ^x1/2,xz)+Q(xz,0)']. 

g ( * i , * 2 , * 8 ) = i M 2 + J ^ 

— (2/7rd!2)[P(x1/2yxz; ^x1/2,Xz)+P(x2,xz; ^x2,xz)^\. 

3C (xhx2,xh (%*,%6,x<i)) = [L {\x2) — l/x2)J[L (%xx)+L (x%) — L (xz/2
ll2)/2112— l/x{\ 

+ [L(*e) - \ / x { \ [ L ( * 8 ) -L(x4 /21 /2)/21 /2]+7 r-
3 /2[0{xx /2,x z ; <fcxx/2yxz) 

~P(XI/2,XA; ^x1/2JX4) — P(xz,x5; ^xZyx6)+Q(x4:,x5; ^x^x5)2. 

The variables xh x2, xz, x4, #5, #6 have the following meaning: 3Z($RacfiRhcfiRh(ac)): 

Xi 

fiRac 
X2 

PR*e 
#4 

PR(ac)(bc) 
XB 

&R(ab)(ac) 

X$ 

&Rc(ab) ftRb(ac) 

For the remaining five 3C functions the variables are found by permutations, as explained in the text of the paper 
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APPENDIX II 

(A) Asymptotic Series Expansions Used for the Evaluation of the Basic Integrals 

2 r 1 1 3 (2w-3)H 
K(x)=-e~*2 et2dt~—+—+—+ 

x JQ x2 2x* 4x6 2n~1x2n 

2 1 r erfo 1 e~**r 1 1X3 ( - l)n~1(2n-3)!! 1 
L(x)^ / r^ -s « 1 + +...+ +••• , 

TT^XJO x x x2ir^2L 2x2 (2x2)2 (2x2)n~1 J 

v 2 t 2 3%-* 2 /2 / 1 7 27 321 
eu"[ e r i — * " / N . . . . . 

X Jo 

2 /•» f /•" 1 1 1 3 3X5 (2» -3 ) I ! 

*-*' /"* / u y 1 2*'*erxy2/ 1 7 27 321 \ 
Af(*) = / e W e r f — ) d u ~ - K ( x ) l + ~ + - + — + — + • • • ) , 

X JQ \ 21'2/ 2 7T1/2X3 \ X2 X* X6 Xs ) 

N(x)= f \(e-U"-*>%+'*-<rU'+*>*+v*)f et2dt\du 
XT^JO I Jo ) 

/v>2i /v»4 /y«6 /y*8 
vV * v vA/ ^v 

^2/ 

5 ( * ) s - / (e-^-^2-e-^+^2)( / e ~ ^ 1 du^^2K(x)-~2^2Tr h• • • , 
#./o \Jo J ocz 

and 
21/2 I e-x* 3 g-a;! 

^ ( x ) ^ l - x 2 Z 2 ( x ) + ( 2 / 7 r 1 / 2 ) [ Z ( ^ 2 1 / 2 ) - ^ 2 Z ( a : ) ] 
ir1/2x xV/2 2TT1/2 x5 

(B) Double-Series Development Used for the Evaluation of Q(u>v,a)y for Large u and v 

/•OO / . 2 T /»7T /•OO / . ^ T /»7T 

Q(u,v,a)z= I I I (u2+r2~2ursindsm<p)~ll2'(v2+r2—2vrsmdsm((p+a))'~112 

Jo Jo Jo 

Xeri[(u2+r2-2ur sin0 sin^)1/2]-erf[(z;2+f2--2^ sin0 sin(<p+a))ll2']r2e^r2 sm6ddd<pdr . 

(2w—1)!! (2w—1)!! (w+w)!! f2lr i rri+lf 2ur \ n / 2vr 
<2 E E 

n+m=even (2w) !! (2m) U ( w + W + 1 ) 

r * i rr»+y 2wr \ n / 2w V 
- / s i n > s in m (a+ <?)£ / ) ) 
UJo ™Jri \u>+f*J \v2+r2J 

r2e~r2dr 
X eri(u—ri) erf (v—ri), 

( w 2 + f 2 ) l / 2 ( v 2 + f 2 ) l / 2 

where u>v, 

O = f 0 < ^ i < • • '<ri<r^i<' - -<ri = v—e, 

and e is a positive small number. The derivation of these series expansions, together with numerical details and 
error estimates, is given in a separate report.38 

APPENDIX III 

Summary of Some Numerical Results 

In the following tables a number of numerical results for the relative first- and second-order three-body interac­
tions are given.Tables II and III are associated with Figs. 1 and 2, respectively; in Table IV values for the auxiliary 

TABLE II. Numerical results for relative first-order, three-body interactions AEi/Ei^ for isosceles triangles of argon atoms (fiR = 2A) 
and of xenon atoms (j8i? = 2.0), as a function of the angle 6 between the sides Rab and Rac. 

$ 60° 90° 109°28' 120° 146°27' 180° 

-0.200 
-0.214 

-0.075 
-0.075 

0 
+0.008 

0.027 
0.051 

0.038 
0.076 

0.041 
0.098 
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TABLE III, Numerical results for relative second-order, three-body interactions AE2/E2
(0) for isosceles triangles of argon atoms 

(£R=2.4), as a function of the angle 0 between the sides Rab and Rac of the triangle. The relative contributions of diatomic exchange 
and triatomic exchange are also given. 

e 
f diatomic 

iV£2
( 0 )Uriatomic 

I total 

60° 90° 

+0.280 +0.140 
-0.458 -0.192 
-0.178 -0.052 

109°28' 

+0.086 
-0.070 
+0.016 

120° 

+0.081 
-0.035 
+0.046 

TABLE IV. Numerical values for the auxiliary functions. 

146°27' 

+0.072 
-0.015 
+0.057 

180° 

+0.070 
-0.011 
+0.059 

A. a and (B [Eqs. (9) and (10) of the text]; x=t3Rab=pRac = 2.5. 

0 xi^Rbc 

Numerical 
valueXlO6 

of Ct(xi) 

Numerical 
valueXlO6 

of 03 Oi) 

60° 
90° 
109°28' 
120° 
146°27' 
180° 

1 
2 
8/3 
3 

11/3 
4 

21561 
1973 
647 
420 
191 
142 

38 572 
1031 
118 
38 

5 
1 

B. e and 2D [Eqs. (11) and (12) of the text]; x=(3Rab=l3Rac = 2.5. 

Function (Xi/x)2 (#2 A ) 2 
b2 Numerical 

b = cosa value X106 

4(B(a;i,a;2,a) 
Xi=(3Rac 
X2 = @Rbc 

a— <£bca 

2Q(xi,X2,a) 
Xi = (3Rab 
X2 = (3Rac 

a— ^cab 

2Aab2£>(xhx2,a) 
Xi=(3Rac 

X2 = (3Rc(ab) 

a= $iac{ab) 

2Aab2(£>(%i,X2,a) 
xi=(3Rbc 
X2=(3Rc(ab) 
a== <£bc(ab) 

2Abc2<£>(%i,X2,a>) 
Xi = /3Rac 
X2=PRa(bc) 

a= ^ca(bc) 

60° 
90° 

109°28/ 

120° 
146°27' 
180° 

60° 
90° 
109°28/ 

120° 
146°27/ 

180° 

60° 
90° 
109°28' 
120° 
146°27' 
180° 

60° 
90° 
109°28/ 

120° 
146°27/ 

180° 

60° 
90° 
109°28' 
120° 
146°27/ 

180° 

1 
2 
8/3 
3 
11/3 
4 

1 
1 
1 
1 
1 
1 

3/4 
5/4 
19/12 
7/4 
25/12 
9/4 

1 3/4 
2 5/4 
8/3 19/12 
3 7/4 
11/3 25/12 
4 9/4 

3/4 
1/2 
1/3 
1/4 
1/12 
0 

1/4 
1/2 
2/3 
3/4 
11/12 
1 

V4 
0 
1/9 
1/4 
25/36 
1 

64 
6 
1 

<1 
<1 
<1 

32 
7 
4 
3 

<1 
<1 

3/4 3052 
4/5 1607 
49/57 938 
25/28 884 
289/300 791 
1 760 

3/4 
9/10 
18/19 
3/28 
33/100 
1 

3/4 
1/2 
1/3 
1/4 
1/12 
1 

3052 
1167 
442 
354 
195 
150 

3052 
300 
86 
56 
12 
7 

C. 8, SF, g, and 5C [Eqs. (13)-(16) of the text]; 
X = pRab = PRac = 2.5. 

Function 
Numerical 

0 (xi/x)2 (x2/x)2 (x/x)2 valueXlO6 

4A 0 6 2 &(Xi,X2,Xz) 
Xl=PRac 
X2=(3Rbc 
Xl~pRc{ub) 

60° 
90° 

109°28' 
120° 
146°27/ 

180° 

1 
2 
8/3 
3 

11/3 
4 

3/4 
5/4 

19/12 
7/4 

25/12 
9/4 

-624 
-360 
-340 
-330 
-324 
-320 

Function 
Numerical 

0 (xi/x)* (xs/x)* (x/x)2 valueXlO6 

2A6c2 S>(Xi,X2,X%) 
Xi=(3Rac 

X2 = PRab 
Xz=(3Ra(bc) 

4Aab2$(Xi,X2,X3) 
Xi=(5Rac 

X2 = PRab 
Xz=(3Rb(ac) 

4A0&23 :(X1,^2,^3) 
Xi=(3Rab 
X2=l3Rbc 
Xs = fiRc(ab) 

4:Abc2$(xi,X2,XS) 

xi-pRbc 
X2=(3ac 
Xz=fiRa(bc) 

2Aab2Ab£(Xl,X2,Xd) 
Xi = PRac 

X2=(3Ra(bc) 
X3=PR(bc)(ac) 

2Aab2Abc^(xi,X2,XS) 
Xi=pRaC 

X2—fiRc(ab) 
X3—(3R(ac)(ab) 

2Aab2Ab&{xhX2>Xz) 
x\ — f5Rbc 
X2 = PRc(ab) 
Xz=(3R(ab)(bc) 

4Ao 62A 6c^C (Xi,X2,X-i) 
X\—$Rac 
X2*=(3Rab 

60° 
90° 
109°28/ 

120° 
146°27/ 

180° 

60° 
90° 
109o28' 
120° 
146°27/ 

180° 

60° 
90° 
109°28/ 

120° 
146°27r 

180° 

60° 
90° 
109°28' 
120° 
146°27' 
180° 

60° 
90° 
109°28' 
120° 
146°27/ 

180° 

60° 
90° 
109°28/ 

120° 
146°27r 

180° 

60° 
90° 
109°28/ 

120° 
146°27A 

180° 

60° 
90° 
109°28' 
120° 
146°27/ 

180° 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1/2 
8/3 
3 
11/3 
4 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
2 
S/S 
3 
11/3 
4 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
2 
8/3 
3 
11/3 
4 

1 
1 
1 
1 
1 
1 

3/4 
1/2 
1/3 
1/4 
1/12 
0 

3/4 
5/4 
19/12 
7/4 
25/12 
9/4 

3/4 
5/4 
19/12 
7/4 
25/12 
9/4 

3/4 
1/2 
1/3 
1/4 
1/12 
0 

3/4 
5/4 
19/12 
7/4 
25/12 
9/4 

3/4 
5/4 
19/12 
7/4 
25/12 
9/4 

3/4 
1/2 
1/3 
1/4 
1/12 
0 

1/4 
1/4 
1/4 
1/4 
1/4 
1/4 

1/4 
1/2 
2/3 
3/4 
11/12 
1 

1/4 
1/4 
1/4 
1/4 
1/4 
1/4 

3/4 
5/4 
19/12 
7/4 
25/12 
9/4 

-312 
+30 
+ 12 
+4 
+ 1 
<1 

441 
76 
18 
7 

+2 
-4 

441 
81 
24 
13 
3 
2 

441 
40 
13 
6 
1 

<1 

6032 
2510 
1140 
712 
396 
339 

6032 
1228 
409 
222 
74 
41 

6032 
1120 
354 
178 
59 
34 

1225 
488 
250 
155 
73 
51 
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TABLE IV (continued) 

Function 

4Aab2Abc3C (Xi,X2,Xs) 
Xi = fiRac 
x2 = (3Rbc 

%Z = fiRb{ac) 

6 

60° 
90° 

109°28' 
120° 
146°27' 
180° 

(xi/x)2 (x2/x)2 

1 
2 
S/3 
3 

11/3 
4 

(x /x)2 

3/4 
5/4 

19/12 
7/4 

25/12 
9/4 

Numerical 
value X106 

1225 
+232 

- 1 3 
- 4 1 
- 5 1 
- 5 7 

Function 

4AG 62A &cCfC (xi,X2,X3) 
xi=pRbc 
X2=(3Rac 

X2=pRa(bc) 

e 
60° 
90° 

109°28/ 

120° 
146°27/ 

180° 

(xi/x)2 (x2/x)2 

1 1 
2 1 
S/3 1 
3 1 

11/3 1 
4 1 

0 /x)2 

3/4 
1/2 
1/3 
1/4 
1/12 
0 

Numerical 
value X106 

+ 1225 
- 2 4 
- 6 5 

-115 
- 7 7 
- 6 7 

functions (5t-3C [Eqs. (9)-(16) of the text] are collected for isosceles triangles abc of argon atoms. To simplify the 
notation the climensionless nearest-neighbor distance (3Rab=l3Rac is represented by x\ the numerical results for 
the auxiliary functions correspond with a; =2.5. 

P H Y S I C A L R E V I E W V O L U M E 1 3 5 , N U M B E R 5A 3 1 A U G U S T 1 9 6 4 

Polar Reflection Faraday Effect in Metals* 

EDWARD A. STERN,! JAMES C. MCGRODDY, AND WILLIAM E. HARTEJ 

University of Maryland, College Park, Maryland 
(Received 30 August 1963; revised manuscript received 28 April 1964) 

If one reflects plane-polarized light from a nonferromagnetic metal with a magnetic field normal to the re­
flecting surface, the reflected light is found to have its plane of polarization rotated from that of the incident 
beam, and is slightly elliptically polarized. This effect is known as the polar reflection Faraday effect (PRFE). 
The PRFE has been measured for aluminum and silver as a function of wavelength in the range 4150-8000 A. 
The equipment to measure this effect to an accuracy of about 2% is described. Detailed studies on aluminum 
have shown that the PRFE is much less sensitive to the condition of the surface than ordinary optical-
constant measurements and the measurements presented appear to be representative of bulk properties. The 
frequency dependence found for both aluminum and silver can in large part be explained by the simple intra-
band theory. Although the theory relates the PRFE to the off-diagonal term of the conductivity tensor, the 
inconsistency of the many optical measurements of aluminum makes the determination of the off-diagonal 
conductivity ambiguous. In the case of silver, the real and imaginary parts of the off-diagonal conductivity 
can be obtained with a fair degree of accuracy. 

I. INTRODUCTION 

IT has been well known for quite some time that plane-
polarized light after reflection from ferromagnetic 

metals magnetized normal to the reflection plane be­
comes elliptically polarized with its major axis rotated 
from the initial polarization direction.1 The angle of 
rotation of this magneto-optic Kerr effect is of the order 
of one degree, and it is caused by the spin-orbit inter­
action.2 Less well known and certainly not as intensely 
studied experimentally is an experimentally similar 
effect in nonferromagnetic metals which we call the 
polar reflection Faraday effect. Plane-polarized light 

* This research is partly based on the Ph.D. dissertation of 
James C. McGroddy, University of Maryland, 1964. 

f Temporarily at Royal Society Mond Laboratory, University 
of Cambridge, England, during sabbatical leave. Guggenheim 
fellow 1963-1964. 

{Present address: Laboratory for Physical Sciences, College 
Park, Maryland. 

1 'F. A. Jenkins and H. E. White, Fundamentals of Optics 
(McGraw-Hill Book Company, Inc., New York, 1957), 3rd ed., 
Chap. 9. 

2 P. N. Argyres, Phys. Rev. 97, 334 (1955). 

incident normally on a nonferromagnetic metal surface 
with a magnetic field normal to the surface, suffers on 
reflection a small rotation of the plane of polarization 
and also becomes slightly elliptically polarized. The 
reason why this effect has not been well studied experi­
mentally is not hard to surmise when one realizes that 
the angle of rotation is about 10~4 deg for a field of 103 

Oe. The amount of an elliptical polarization is also cor­
respondingly smaller. In a rather remarkable bit of work, 
especially considering the experimental techniques 
available at that time, Majorana was apparently the 
first one to measure the polar reflection Faraday effect, 
doing so for Al, Ag, Au, Pt, Bi.3 His accuracy was under-
standingly poor but he unquestionably showed the 
existence of the effect. Later and independently the 
effect was rediscovered and measured with greater 
accuracy taking advantage of the more modern tech­
niques available.4,5 

3Q. Majorana, Nuovo Cimento 2, 1 (1944). 
4 E. A. Stern and R. D. Myers, Bull. Am. Phys. Soc. 3, 416 

(1958). 
5 E . A. Stern, Bull. Am. Phys. Soc. 5, 150 (1960); J. C. Mc­

Groddy and E. A. Stern, ibid. 8, 392 (1963). 


